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Abstract

Realistic driving simulation requires that NPCs not only
mimic natural driving behaviors but also react to the behavior
of other simulated agents. Recent developments in diffusion-
based scenario generation focus on creating diverse and re-
alistic traffic scenarios by jointly modelling the motion of
all the agents in the scene. However, these traffic scenarios
do not react when the motion of agents deviates from their
modelled trajectories. For example, the ego-agent can be con-
trolled by a stand along motion planner. To produce reactive
scenarios with joint scenario models, the model must regen-
erate the scenario at each timestep based on new observations
in a Model Predictive Control (MPC) fashion. Although re-
active, this method is time-consuming, as one complete pos-
sible future for all NPCs is generated per simulation step. Al-
ternatively, one can utilize an autoregressive model (AR) to
predict only the immediate next-step future for all NPCs. Al-
though faster, this method lacks the capability for advanced
planning. We present a rolling diffusion based traffic scene
generation model which mixes the benefits of both methods
by predicting the next step future and simultaneously predict-
ing partially noised further future steps at the same time. We
show that such model is efficient compared to diffusion model
based AR, achieving a beneficial compromise between reac-
tivity and computational efficiency.

Introduction
Traffic simulation is essential in the development of au-
tonomous driving systems, particularly for addressing sim-
to-real issues during real-world deployment. A key compo-
nent is the realistic behavior of simulated surrounding agents
or non-playable characters (NPCs), as noted by (Gulino et al.
2024). One approach involves replaying recorded driving
behaviors, obtained either from overhead drones (Zhan et al.
2019) or onboard vehicle recordings (Sun et al. 2020). Ac-
cording to (Gulino et al. 2024), reinforcement learning poli-
cies trained on such driving logs outperform those trained
with NPCs controlled by the rule-based reactive planner like
the Intelligent Driver Model (IDM) (Treiber, Hennecke, and
Helbing 2000). However, this log-replay approach has two
drawbacks, the collection of driving records is both costly
and time-consuming (Rempe et al. 2022; Liu et al. 2023). In
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addition, real-world agents react to the ego agent’s behavior
with diverse actions, a dynamic not captured by IDM.

An increasingly popular alternative involves controlling
simulated NPCs with generative driving behavior mod-
els (Suo et al. 2021; Ścibior et al. 2021; Xu et al. 2023),
which learn to generate realistic driving trajectories from
recorded behaviors. These models facilitate the generation
of a diverse set of synthetic driving logs. More recently,
diffusion model based traffic scene prediction models have
become more popular (Guo et al. 2023; Jiang et al. 2023;
Niedoba et al. 2024). These models generate joint future tra-
jectories for all agents based on initial observations and al-
low for flexible conditioning at test time with classifier guid-
ance for tasks like adversarial scenario generation (Zhong
et al. 2023) and scenario editing (Niedoba et al. 2024).

While these diffusion based models are suitable for open-
loop simulations, employing them in closed-loop simula-
tions is time-consuming due to the inherently slow gener-
ation times of diffusion models. In such setups, one would
need to replan at each simulation timestep to maintain maxi-
mum reactivity to the uncontrolled ego agent. Current meth-
ods utilizing diffusion models for closed-loop traffic scene
planning typically generate a small window of steps ahead,
then replan (Chang et al. 2023) to create adversarial scenar-
ios. However, this approach may be inefficient, our method
improves upon this by partially denoising the future plan and
only predicting a clean subsequent state after realizing all
agents’ states at the last simulation step.

We propose a rolling diffusion-based traffic simulation
planner that plans for all agents in the scene in an autore-
gressive manner, which is four times faster than a typical
autoregressive diffusion model in terms of the number of
denoising steps, while remaining reactive to the adversarial
agent, as demonstrated in our empirical evaluation. Since the
denoising operation cannot benefit from parallel computing,
this iterative process becomes the bottleneck in simulation
speed. Furthermore, our experiments, which involve training
on real-world driving logs (Zhan et al. 2019), demonstrate
that our rolling-ahead traffic planner produces more realistic
scenes than our diffusion-based AR baseline, as measured
qualitatively and by scene-level displacement metrics.



Background
Diffusion Models
Diffusion models (Sohl-Dickstein et al. 2015; Ho, Jain, and
Abbeel 2020; Kingma et al. 2021; Karras et al. 2022; Song
et al. 2020) are probabilistic generative models which have
recently been applied to the problem of traffic scenario mod-
elling. They are defined based on a forward process which
gradually adds Gaussian noise to data. The amount of noise
added at any point is based on the “time” in the forward pro-
cess, τ . We will refer to the copy of the data at a certain dif-
fusion timestep as xτ . When τ equals zero, xτ = x0 is the
original data with no noise. For positive τ , the distribution
of xτ given x is

q(xτ |x0) = N (xτ ;ατx0, σ
2
τI), (1)

where ατ and στ are τ -dependent scalars and τ ∈ [0, 1]. In
this paper, we will set ατ = 1 for all τ following EDM (Kar-
ras et al. 2022). We will define στ to be an increasing func-
tion which is zero when τ is zero and large when τ = 1. The
signal-to-noise ratio is defined by

SNR(τ) =
α2
τ

σ2
τ

. (2)

Given our choices of ατ and στ , the signal to noise ratio is
small for τ = 1. This means that q(x1|x0) will be well-
approximated by a zero-mean Gaussian, and therefore the
marginal q(x1|x0) =

∫
q(x1|x0)pdata(x0)dx0 will also be

roughly Gaussian.
It is possible to ”invert” this forward process, yielding a

reverse process that can transport samples from q(x1) to
q(x0), as shown by (Song et al. 2020). This reverse pro-
cess maps a roughly-Gaussian distribution to the data distri-
bution, allowing us to make realistic samples out of noise.
Doing so only requires an approximation of the score func-
tion ∇xτ

log q(xτ ). Such an approximation can be learned
by optimizing the loss (Song et al. 2020)

Ldiffusion(θ) =

Epdata(x0)q(xτ |x0)u(τ)

[
ω(τ)∥Dθ(xτ ; τ)− x0∥22

] (3)

where u(τ) is a distribution over diffusion times to use dur-
ing training, ω(τ ) is a function that weights the contribution
of each timestep to the loss, and Dθ(·, ·) represents a neu-
ral network that produces an output of the same shape as
x0. This neural network learns to estimate clean data given
noisy data, and such an estimate can be used to produce an
estimate of the score function (Song et al. 2020). This can be
used to simulate the SDE that produces sampled clean data
x0 given samples from a Gaussian approximating q(x1).
Through out the paper we use τ as the time in the diffusion
process and t as the chronological time within a scenario.
Note that the diffusion model can be made conditional on
any extra information by inputting the extra information into
the neural network in Eq. (3) and providing it to the neural
network in the same way at test-time (Tashiro et al. 2021).

Temporally Correlated Diffusion Models
The above formulation of diffusion models becomes less
efficient in terms of memory and computational resources

as the dimensions of x0 grow, particularly for long se-
quence modeling. The authors of the rolling diffusion model
(RDM) (Ruhe et al. 2024) introduce a method by modelling
a sliding window of x0, given the assumptions that elements
that are far in the past from the sliding window are irrel-
evant.The authors propose assigning temporally correlated
noise levels to the elements within the sliding window, in-
troducing a temporal inductive bias to the model. Previous
work has shown that this particular inductive bias helps gen-
erating diverse and high quality samples in long term human
motion predictions (Zhang et al. 2023) and being efficient
in NLP tasks like summarization and translation (Wu et al.
2024). RDM formalizes the temporal noise correlation ap-
proach and provides a local and global perspective of mod-
elling long sequences of videos.

We begin our discussion by examining a general rule for
diffusion models that incorporate temporal noise correlation
for sequences. We then delve into the specific mechanisms
of the RDM, reviewing both its forward and reverse pro-
cesses along with its objective function, and the two operat-
ing stage as depicted in Figure 2.

Given a long sequence of data with length T , RDM ap-
proaches the problem from a local perspective by examin-
ing a single sliding window of length W . Within this frame-
work, RDM defines a function g that maps a global diffusion
step τ to a local diffusion step τw ∈ [0, 1] given the local
window index w. The fundamental rule for diffusion models
with temporal noise correlation is

SNR(τw+1) < SNR(τw),

indicating the temporal nature of the sequence results in in-
creased uncertainty as time progresses. As shown in Fig-
ure 2, darker-colored circles represent higher uncertainty be-
cause they are at a higher noise level.

Given a sampled sequence index t, The forward process
within the local window in RDM is

q(xt:t+W
τ |xt:t+W

0 ) =

t+W−1∏
w=t

N (xw
τ ;ατwx

w
0 , σ

2
τwI), (4)

where the diffusion parameter ατw and στw are local diffu-
sion step τw-dependent scalars rather than τ in Eq. (1). This
represents the fact that more noise is added to the later frame
as ατ and στ is monotonically increasing with respect to τ .

For the reverse process, RDM defines

pθ(x
t:t+W
τ−1 |xt:t+W

τ ) :=

t+W−1∏
w=t

q(xw
τ−1|xt:t+W

τ , xw = fθ(xτ , τw)). (5)

The benefit arising from such formulation is that instead
of training on the full sequence T which is memory in-
efficient and complex, RDM’s objective function is defined
only within a sampled sliding window with length W ,

Eτ∼U(0,1),

xt:t+W
τ ∼q

[ t+W−1∑
w=t

ω(τw)∥Dθ(x
t:t+W
τ ; τw)− xw

0 ∥22
]
.

(6)



Figure 1: From top to bottom row: DJINN (Niedoba et al. 2024), autoregressive (AR), and RoAD (Ours). The adversarial
agent, marked with a red dot, follows its replay log and slows down to reach only half its trajectory by the end of the simulation.
Brown circles highlight the interaction region. The agents controlled by the RoAD and AR models slow down to react to
the adversarial agent, while agents controlled by the DJINN model do not. Ground truth trajectories are shown in gray, and
predicted trajectories are shown in orange.

There are two stages of RDM, the warm-up stage and the
rolling stage. In the warm-up stage, the model handles the
initial boundary condition by generating from white noise,
as shown in the first row of Figure 2 (left), and denoises it
to produce one clean element and partially denoised future
elements in the sliding window as shown in the bottom row.
Once it reaches the temporal correlated noise stage (Bottom
row of Figure 2 left), RDM takes few denoising steps for the
next step prediction shown in Figure 2 (right). This requires
the model to train two tasks, where β controls the training
task distribution and for each tasks, RDM designs an asso-
ciated function g for calculating the local diffusion time τw
given τ and window index w. In addition, we can condition
n number of clean observations within the sliding window,
g is defined for warm-up and rolling stage as

gwarm-up(τ, w) := max(min(
w

W
+ τ, 1.0), 0.0) (7)

grolling(τ, w) := max(min(
w + τ − n

W − n
, 1.0), 0.0), (8)

where n,W are application-dependent hyperparameters.

Related Work
Traffic Simulation with Diffusion Models
Predicting the motion of road users is a critical task for au-
tonomous vehicle driving or simulation. For this reason, the
number of methods which have attempted to model traffic
behavior is vast. The literature contains a variety of tech-
niques for modelling the distribution of driving behavior, in-
cluding mixture models (Chai et al. 2019; Cui et al. 2019;
Nayakanti et al. 2023), variational autoencoders (Ścibior
et al. 2021; Suo et al. 2021), and generative adversarial net-
works (Zhao et al. 2019).

Our work builds upon recent methods which model driv-
ing behavior using diffusion models. In CTG (Zhong et al.
2023), the authors model the motion of each agent in the
scene independently with a Diffuser (Janner et al. 2022)
based diffusion model. The authors of (Chang et al. 2023)
also model agent motions via diffusion, with a focus on con-
trollability. By contrast, most other diffusion based traffic
models model entire traffic scenes. This includes Motion-
Diffuser (Jiang et al. 2023), Scenario Diffusion (Pronovost
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Figure 2: Rolling Diffusion Model. Columns represent sequence timesteps and rows represent diffusion timesteps. Circles are
shown in white if the corresponding sequence timestep is fully denoised; black if the sequence timestep is pure noise; and grey
if in between. During the denoising process, the SNR for each element in the rolling window depends on the local diffusion
time τw which can be calculated using Eq. (7) or Eq. (8), depending on whether it is in the warm-up or rolling stage.

et al. 2023) and SceneDM (Guo et al. 2023) which all diffuse
the joint motion of all agents in the scene. Our work builds
directly on that of DJINN (Niedoba et al. 2024), which uti-
lizes a transformer based network to generate joint traffic
scenarios based on a variable set of agent state observations.
Crucially, due to the expensive computational cost of diffu-
sion model sampling, only CTG (Zhong et al. 2023) utilize
their model for closed-loop scenario simulation. Twice per
second, they incorporate new state observations and resam-
ple trajectories for each agent. By comparison, our method
does not require iterative replanning, greatly improving sim-
ulation speed.

Methods
Problem Formulation
We refer to the motion of A agents across T discrete times
in an environment M as a traffic scenario. Formally, we de-
fine the scenario as x ∈ RA×T×3, where we represent the
state of each agent a ∈ A at time t ∈ T as the combination
of its 2D position and 1D orientation. We introduce a proba-
bilistic planner πsim which jointly predicts the future states
for all agents, conditioned on static map information M and
previously observed agent states xobs ∈ RA×tobs×3 .

A more difficult form of this planning problem is closed-
loop traffic simulation. In closed-loop simulation one agent,
known as the ego agent aego, is typically controlled by a
standalone motion planner πego which may be a black-box
and which may cause the ego agent to drive very differently
to any agents in the training data and thus is not amenable to
accurate prediction by the traffic scenario planner πsim. At
each time step t, the standalone motion planner πego plans
the single next step for the ego-agent given the entire his-
tory of the scenario, x0:t and the map M. The closed-loop
traffic simulation problem is to model the behavior of ev-
ery other agent in this scene, including potential interactions
with the ego agent. Since the state of the ego agent is neither
controllable nor known in advance, the traffic scenario plan-
ner πsim must continually update its plan to be continuously

conditioned on the most recent state and actions of the ego
agent.

Replanning with a joint prediction model
Our baseline planner relies on a conditional diffusion model
p(xtobs:T |x0:tobs ,M, c), which jointly predicts the scenario
for all agents in the scene up to time T given the map M and
additional conditioning information c. Although diffusing
the joint states of all agents is a flexible way of modelling the
distribution of traffic scenarios, the model does not respond
to the ego agent trajectories which deviate from modelled
behavior. To mitigate this, one option is to regenerate the
traffic scenario after each simulator step to incorporate new
ego agent state observations. We select DJINN (Niedoba
et al. 2024) as our conditional diffusion model and we de-
note this method of iterative planning as DJINN-MPC as it
resembles a traditional model predictive control loop. This
allows the scenario simulation planner πsim to adjust its
predictions at every simulation step in response to the stan-
dalone ego agent in the scene.

Diffusion based autoregressive model (Diff-AR)
One key drawback of DJINN-MPC is that we must fully dif-
fuse a new traffic scenario at every simulator step, at signifi-
cant cost. As an alternative, one can train an diffusion based
autoregressive model as the simulation planner, which fac-
torizes the conditional probability as

p(xtobs:T |x0:tobs ,M, c) =

T−1∏
t=tobs

p(xt|x0:t−1
0 ,M, c).

Given the past observations, the model only predicts one
subsequent step. In practice, the history of past observations
x0:t−1
0 is truncated to a fixed length. Compared to the pre-

vious method, Diff-AR is slightly more efficient as it only
denoises the single-step future from scratch. However, Diff-
AR cannot anticipate other agents’ long-term behaviors be-
yond the immediate next step which is important for effec-
tive planning in many traffic scenarios.



Rolling ahead autoregressive model
We propose a rolling diffusion based model (RoAD) for traf-
fic scenario planning based on RDM. We start by providing
an overview of our autoregressive traffic planner, then dis-
cuss some details of our design choices on the diffusion pro-
cess and the model with our updated objective function.

We utilize a sliding window of length W , which is much
smaller than the scenario length T . This sliding window
includes tobs clean observations for all agents. Within this
window, only the tobs+1th state is fully denoised at each
scenario time for all agents, while the remainder of the se-
quence undergoes partial denoising. At the next simulation
step, we then shift the sliding window and repeat the pre-
vious process. By focusing on a smaller window and selec-
tively denoising, our approach maintains computational effi-
ciency while preserving the ability to adaptively plan for the
immediate future.

We follow the design choices from EDM (Karras et al.
2022) in designing our diffusion process. Given a local dif-
fusion time τw, during training, our στ is a continuous ver-
sion of the sampling noise schedule in EDM,

στ = (σmax
1
ρ + τ(σmin

1
ρ − σmax

1
ρ ))ρ,

where we keep the default hyper-parameter choice for σmax,
σmin and ρ from (Karras et al. 2022). We apply the Heun 2nd
order sampler to sample at prediction time with the same
hyper-parameter reported in EDM. We referred the reader to
EDM for the detailed denoising algorithms.

As we are interested in modelling a joint traffic planner
for all agents in the scene, we diffuse in a global coordinate.
We adopt the map representation from (Niedoba et al. 2024)
where M is represented as an unordered set of polylines,
each polylines describing lane centers and normalized for
length and scale to match the agent states. Our model, built
on a transformer-based architecture utilizes a feature tensor
shaped [A,W,F ] to process agent trajectories and map in-
formation. It embeds noisy and observed states, temporal in-
dices, and the local diffusion step τw into high-dimensional
vectors with feature dimension F . We apply per-agent posi-
tional embeddings to these feature vectors, which are then
fed into a series of transformer blocks that perform self-
attention in the time and agent dimensions, as well as cross-
attention with the map features.

Rather than denoise the sequence one by one as in Eq. (6),
our transformer architecture jointly predicts the score for all
noisy states in the window. Denote xW as the sliding win-
dow of interest. Our score estimator Dθ takes in xW

τ , τ , and
the map M, along with additional conditional information
c that includes the dimensions of each agent. Our updated
objective function is

ExW
0 ,τ ,xW

τ
[ω(τ )∥Dθ(x

W
τ ,M, c, τ )− xW

0 ∥22]. (9)

Note that xW
τ is sampled from RDM forward process de-

fined in Eq. (4) that contains states with noise level accord-
ing to τw. While local diffusion time τw depends on the win-
dow index w and the global diffusion steps τ , all agents in
the scene has a consistent local diffusion time τw. Therefore,

our score estimator Dθ takes a vector τ = {τw}Ww=0 to re-
flect the temporal correlation of different nose levels in xW

τ .
The weighting term is also a vector that takes vector τ as
input then assign different weights according to each τw.

While our rolling ahead autoregressive model is efficient
for long traffic scenario planning, the partially denoised fu-
ture plan affects the reactivity of our model. In traffic sim-
ulation, such degradation may cause a higher collision rate
with the uncontrolled ego agent in the scene. The reactivity
of the model depends on the SNR of future states. We empir-
ically evaluate the reactivity of our model compared to the
AR baseline in our experiment section.

Conditioning Augmentation
We have empirically found that noise conditioning augmen-
tation, as described by (Ho et al. 2022b), is essential for all
models operating in an autoregressive manner. This augmen-
tation is critical for autoregressive human motion genera-
tion (Yin et al. 2023), cascaded diffusion models for class-
conditional generation, and super-resolution video gener-
ation (Ho et al. 2022a). Noise conditioning augmentation
enhances the model’s robustness against generated noise,
which serves as observations for subsequent predictions (Ho
et al. 2022b), and it mitigates the risk of the model overfit-
ting to its autoregressive nature. In the context of traffic sim-
ulation, this augmentation aids in generating smooth trajec-
tories and ensures that the model does not ignore other con-
ditional factors, such as the presence of other agents and, im-
portantly, the map M of the environment. Previous work on
diffusion-based traffic simulation (Zhang et al. 2023; Chang
et al. 2023) circumvents the issue of noisy observations by
relying on a kinematic model to produce smooth trajecto-
ries; however, our autoregressive traffic simulation planner
does not require such a kinematic model.

We follow (Ho et al. 2022b) to employ conditioning aug-
mentation for our rolling ahead traffic planner with an im-
portant modification. During training, given a sampled train-
ing segment xW with length W , and n observations xobs

within this segment, we apply Gaussian noise augmentation
to the xobs, where the noise level στca is sampled uniformly
between σmin and σmax. Unlike (Ho et al. 2022b), we found
jointly predicting all elements within the sliding window, in-
cluding the noised observations is enssential for our applica-
tion. At testing time, we apply Gaussian noise with σmin to
our observations for minimal level of augmentation.

From a broader perspective, conditioning augmentation
addresses a well-understood issue in imitation learning with
autoregressive-style methods, where at test-time the model
must condition on samples that it produced earlier. Through-
out a roll-out, the distribution of these samples may shift
so that they appear out-of-distribution relative to the train-
ing data. One solution to this problem allows the model
to learn from its own mistakes using a differentiable sim-
ulator (Ścibior et al. 2021). In the diffusion model con-
text, though, this requires sampling from the reverse pro-
cess which is expensive. We denote this type of augmen-
tation as reverse process conditioning augmentation, where
the noise originates from the model’s prediction. Existing
work (Ho et al. 2022b) on cascaded diffusion models has



achieved comparable performance through both reverse pro-
cess conditioning augmentation and forward process condi-
tioning augmentation for high-resolution image generation
conditioned on a low-resolution image. Therefore, we opt
for the more efficient forward process conditioning augmen-
tation approach.

Experiments
We evaluate our rolling ahead scene generation model
(RoAD) on the INTERACTION dataset (Zhan et al. 2019),
which contains 16.5 hours of driving records across 11 lo-
cations. Our baselines include an autoregressive diffusion
model (AR), which takes observations of length 10 and pre-
dicts the next step future for all agents. Another baseline,
DJINN, is a scene generation model that takes 10 observa-
tions and jointly predicts the next 30 steps at 10Hz for all
agents in a one-shot manner. We have also trained a version
of DJINN that predicts 10 future steps ahead jointly for all
agents (DJINN-10). As our RoAD model with window size
20 (RoAD-20) predicts 10 partially denoised future steps as
well, we believe DJINN-10 provides a reasonable compari-
son. DJINN-10 (MPC-X) is a variant of DJINN-10 that has
been trained with conditioning augmentation and deployed
in an MPC style, enabling us to replan after executing X
steps of predictions for all agents.

We first compare RoAD with AR, DJINN, and DJINN-
10 (MPC) using standard scene-level displacement metrics
such as minSceneADE and minSceneFDE to demonstrate
the quality of samples generated by RoAD. We then as-
sess the reactivity of DJINN, DJINN-10 (MPC-1), AR and
RoAD with an adversarial agent, which is not controlled by
the scene generation model, by measuring the collision rates
with the adversarial agent.

Implementation Details We adopt the same transformer
architecture from DJINN (Niedoba et al. 2024) for all of our
models. We apply 0.2 conditional augmentation for AR and
DJINN-10 and 0.5 for RoAD, as we found that higher con-
ditional augmentation ratio for AR and DJINN-10 results in
worse performance. We train our RoAD planner with obser-
vation length 10 and task ratio β=0.1.

Evaluation Metrics We measure the accuracy of our gen-
erated trajectories with standard displacement metrics. To
measure the joint motion forecasting quality, we follow
(Ngiam et al. 2021) reporting minSceneADE and min-
SceneFDE. Both metrics capture the minimum joint dis-
placements error for all agents across 6 joint traffic scenario
samples. To measure per-agent motion forecasting perfor-
mance, we report the miss rate; the rate of agents where none
of the six predicted trajectories have a final displacement
error less than 2 meters. To measure the reactivity of each
model, we report the collision rate, the number of collisions
divided by the total number of simulated scenarios.

Motion Forecasting We compare RoAD with AR and
DJINN-10 on the motion forecasting task using the valida-
tion set of the INTERACTION dataset (Zhan et al. 2019).
We generate three seconds of driving behavior at 10 hertz,
conditioned on one second of observations. We consider the

performance of DJINN as the upper bound for this task since
DJINN is trained only at this fixed time horizon and is not an
autoregressive model by nature. Following (Niedoba et al.
2024), displacement metrics are calculated by generating
24 samples for each scenario and fit a 6 component Gaus-
sian mixture model to cover all future modes. DJINN-10
(MPC-1) achieves slightly better results than AR but per-
forms worse than RoAD due to larger accumulated errors
from replanning at each simulation step.

RoAD models with window sizes of 15 (RoAD-15) and
20 (RoAD-20) achieved lower displacement metrics than
AR models, as RoAD also considers the noisy future steps
beyond the next immediate one. Additionally, RoAD mod-
els exhibit a slightly lower miss rate. We also observed that
RoAD models with larger window sizes demonstrate better
displacement metrics. Displacement metrics are one indica-
tor of the quality of the generated samples. We show quali-
tatively in Figure 3 that RoAD reconstructs to ground truth
trajectories marked in grey better than AR.

Reactivity The RoAD models efficiently roll out long sce-
narios by partially denoising future states. However, this
limits its ability to adapt to perturbations, such as an agent
controlled by a different motion planner while being ob-
served by our model. This is a typical setup in closed-loop
simulation. To evaluate this, we evaluate the RoAD models’
adaptation to an adversarial agent. We select one agent per
scene and control it using its replay log, slowing it down to
reach only half its trajectory by the end of the simulation.
The simulation runs for 40 time steps at 10 Hz, given ini-
tial 10-step observations, which makes the performance of
DJINN one-shot a lower bound since it is blind to the adver-
sarial agent during the simulation.

In total, we select 1,440 scenes from the INTERACTION
validation set, focusing on the top six locations with the
largest number of scenarios. Scenes with a low number of
participants are filtered out, as agents in these scenarios are
less likely to interact. We take three samples per scenario
and for each model, then report the average collision rate
in Table 1. In addition, we reported the prediction time for
a single sample on a RTX2080Ti GPU in Table 2 for each
model to highlight the efficiency of our RoAD models.

DJINN-10 (MPC-1) achieves the lowest collision rate
compared to other models while having the longest total pre-
diction time. AR reduces the collision rate by 3x compared
to the lower bound (DJINN). DJINN-10 (MPC-1) achiev-
ing better results than AR aligns with our expectations, as
DJINN-10 (MPC-1)can look ahead ten steps into the future,
whereas AR predicts only one step ahead. Our proposed
RoAD-15 performs close to AR which reduces the collision
rate over 2.5x compared to DJINN while having half of the
prediction time compared to AR and DJINN-10 (MPC-1).

As an ablation, we measured the collision rate for RoAD-
20 in the reactivity experiment. We observed that increas-
ing the window size can reduce the prediction time further
while having a slightly higher collision rate. Figure S1 in the
Supplementary Materials shows an example where RoAD-
20 failing to react, while RoAD-15 avoids a collision in the
same scenario. This feature provides practitioners with the



Figure 3: From Top to Bottom row, AR, RoAD-20. By looking ahead of the subsequent step, the pedestrian marked with a red
dot controlled by RoAD-20 planner avoided colliding with the vehicle. Brown circles highlight the interaction region. Grey
trajectories denote replay logs and orange trajectories are the full predicted future. This example demonstrates that RoAD-20,
with a longer planning horizon compared to AR can anticipate and mitigate interactions with other agents effectively.

Table 1: Comparison of displacement metrics and collision rate.

Location All
Model Type minSceneADE minSceneFDE Miss Rate
DJINN (One shot) 0.388 1.004 0.049
DJINN-10 (MPC-1) 0.692 1.675 0.166
AR 0.695 1.670 0.168
RoAD-15 0.673 1.596 0.160
RoAD-20 0.654 1.553 0.142

Table 2: Performance with an adversarial ego agent.

Model Collision Rate Prediction time (min)

DJINN 0.052 0.07
DJINN-10
(MPC-1) 0.014 0.69

AR 0.016 0.68
RoAD-15 0.019 0.34
RoAD-20 0.024 0.20

flexibility to decide whether reactivity or computational ef-
ficiency is more important for their simulation needs.

Ablation on conditioning augmentation We show the
significance of conditioning augmentation by measuring the
displacement metrics for two RoAD models trained with
same configuration but one without conditioning augmenta-
tion in Table 4. We can see the displacement errors increased
significantly without conditioning augmentation.

Table 3: Ablation on conditioning argumentation (CA)
across six locations from INTERACTION dataset.

Metrics RoAD w/o CA RoAD w CA
minSceneADE 0.930 0.663
minSceneFDE 2.197 1.579
ego minADE 0.693 0.475

Conclusion
In conclusion, we have proposed a rolling diffusion-based
traffic scene planning framework that strikes a benefi-
cial compromise between reactivity and computational effi-
ciency. We believe this work addresses a gap in the commu-
nity by enabling the autoregressive generation of traffic sce-
narios for all agents jointly, and it offers insights into the cru-
cial role of conditioning augmentation techniques. For fu-
ture work, we aim to explore test-time conditioning with this
model and seek to enhance model performance through flex-
ible conditioning on past observations (Harvey et al. 2022).
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A.; et al. 2023. Video Killed the HD-Map: Predicting Multi-
Agent Behavior Directly From Aerial Images. In 2023 IEEE
26th International Conference on Intelligent Transportation
Systems (ITSC), 3261–3267. IEEE.
Nayakanti, N.; Al-Rfou, R.; Zhou, A.; Goel, K.; Refaat,
K. S.; and Sapp, B. 2023. Wayformer: Motion Forecasting
via Simple & Efficient Attention Networks. In IEEE In-
ternational Conference on Robotics and Automation, ICRA
2023, London, UK, May 29 - June 2, 2023, 2980–2987.
IEEE.
Ngiam, J.; Caine, B.; Vasudevan, V.; Zhang, Z.; Chiang, H.-
T. L.; Ling, J.; Roelofs, R.; Bewley, A.; Liu, C.; Venugopal,
A.; et al. 2021. Scene transformer: A unified architecture
for predicting multiple agent trajectories. arXiv preprint
arXiv:2106.08417.
Niedoba, M.; Lavington, J.; Liu, Y.; Lioutas, V.; Sefas, J.;
Liang, X.; Green, D.; Dabiri, S.; Zwartsenberg, B.; Scibior,
A.; et al. 2024. A Diffusion-Model of Joint Interactive Navi-
gation. Advances in Neural Information Processing Systems,
36.
Pronovost, E.; Ganesina, M. R.; Hendy, N.; Wang, Z.;
Morales, A.; Wang, K.; and Roy, N. 2023. Scenario Dif-
fusion: Controllable driving scenario generation with diffu-
sion. Advances in Neural Information Processing Systems,
36: 68873–68894.
Rempe, D.; Philion, J.; Guibas, L. J.; Fidler, S.; and Litany,
O. 2022. Generating Useful Accident-Prone Driving Scenar-
ios via a Learned Traffic Prior. In Conference on Computer
Vision and Pattern Recognition (CVPR).



Ruhe, D.; Heek, J.; Salimans, T.; and Hoogeboom, E.
2024. Rolling Diffusion Models. arXiv preprint
arXiv:2402.09470.
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Supplementary Materials
Introduction
We provide an extended discussion on related work regard-
ing autoregressive diffusion models. We also detail the com-
putational resources and datasets used in our experiments.
Furthermore, we present additional results on accumulation
errors caused by replanning for DJINN-10, as well as visual-
izations showcasing the reactivity of the RoAD model with
varying window sizes.

Additional Related Work
Autoregressive Diffusion Models (ARDM) (Hoogeboom
et al. 2021) introduce an order-agnostic autoregressive dif-
fusion model that combines an order-agnostic autoregressive
model (Uria, Murray, and Larochelle 2014) with a discrete
diffusion model (Austin et al. 2021). The order-agnostic na-
ture of this model eliminates the need for generating sub-
sequent predictions in a specific order, thereby enabling
faster prediction times through parallel sampling. Addition-
ally, relaxing the causal assumption leads to a more efficient
per-time-step loss function during training. However, such
a model is not suitable for our application due to the se-
quential nature of traffic simulation. AMD (Han et al. 2024)
proposes an auto-regressive motion generation approach for
human motion given a text prompt, but unlike the Rolling
Diffusion Model, it denoises one clean motion sample at a
time, which is slow at prediction time. The Rolling Diffu-
sion Model (RDM) (Ruhe et al. 2024) proposes a sliding
window approach targeted at long video generation but does
not specifically study its application in a multi-agent system,
particularly for closed-loop traffic simulation. We investi-
gate the level of reactivity when applying rolling diffusion
models as a traffic scene planner.

Compute resources
We run all our experiments on four NVIDIA V100 GPUs
hosted by a cloud provider. We trained our RoAD models
for 9 days, and so 36 GPU-days. AR and DJINN were also
trained for 36 GPU-days. In total, including preliminary runs
and ablations, we estimate that the project required roughly
300 GPU-days.

Dataset
We experiment with the INTERACTION dataset (Zhan et al.
2019) which is available for non-commercial use following
the guidelines at https://interaction-dataset.com/.

Accumulation Errors for DJINN-10
We observe that DJINN-10, even when trained with con-
ditional augmentation, still experiences accumulation errors
caused by autoregressive replanning. In Table 4, we compare
the displacement error of DJINN-10 at a replanning rate of
10 Hz (MPC-1) and 2 Hz (MPC-5) for a prediction horizon
of 40 with an observation length of 10. DJINN-10 (MPC-1)
exhibits significantly higher displacement error. In contrast,
RoAD utilizes a sliding window approach with decreasing

SNR ratio within the window. Denoising for the next sim-
ulation step does not start from Gaussian noise, resulting in
lower accumulation errors compared to DJINN-10 (MPC-1).

Table 4: Accumulation Errors caused by replanning for
DJINN-10

Metrics DJINN-10 (MPC-1) DJINN-10 (MPC-5)
minSceneADE 0.692 0.583
minSceneFDE 1.675 1.351
Miss Rate 0.166 0.091

Additional Visualizations
In Figure 4, we demonstrate that the flexibility of our RoAD
model by adjusting the sliding window size.



Figure 4: From top to bottom row: RoAD-20, RoAD-15. The adversarial agent, marked with a red dot, follows its replay log
and slows down to reach only half its trajectory by the end of the simulation. Brown circles highlight the interaction region.
RoAD-15 achieves better reactivity than RoAD-20, as reducing the window size causes the model to denoise the next element
from a lower signal-to-noise ratio (SNR), which provides the model with greater flexibility to adjust to the adversarial agent.


